“A Proposed Structure for the Nucleic Acids”

Hello again, girls and boys and whatever else may be out there reading. It’s time once again for this blog’s contribution to The Giant’s Shoulders (hosted this time over at “Second Order Approximation“). This month I’m looking at something even smaller than usual. Inspired by my new job in the biochemistry department where they seem to do a substantial amount of X-ray crystallography (which I do not – yet – understand as well as I’d like), I thought I’d drop all the way down to the molecular level and talk about a fundamental discovery that helped make modern molecular microbiology possible: the structure of DNA.

Yes, it was over a half-century ago that an accomplished scientist, working with X-ray images produced from crystallized nucleic acids, published the first proposed structure for for them – the famous Triple Helix.

Continue reading “A Proposed Structure for the Nucleic Acids”

FoodTV’s new “Food Detectives” show…

That’s all I can stands, I can’t stands no more! I had intended to try to come up with another post for this month’s “The Giant’s Shoulders” anthology, but I’ve just encountered such an appalling concentration of disappointing un-science that I cannot restrain myself any further. Guess I’ll have to settle for one post in the anthology this month.

FoodTV’s new “Food Detectives” show sounded so promising. I thought to myself “‘MythBusters’ meets ‘Good Eats’!?!? That would be pure, refined, pharmaceutical-grade WIN!” Then I saw their premier episode. The “experiments” appeared blatantly and badly staged, and in some cases shockingly badly designed. For example, their “experiment” with refrigerator deodorants involved showing a guy sticking his face into a ‘fridge allegedly full of smelly stuff and filming him making faces while they timed how long he pretended to be willing to keep his face in there.

Continue reading FoodTV’s new “Food Detectives” show…

Benzoic Acid Part 2: “Sour Stuff”

Okay, now that the boring review is over with…

Consider the cell. It doesn’t matter what kind of cell – bacterial, archael, fungal, animal, whatever. It’s still a tiny droplet of slightly salty water, thickened by a bunch of enzymes, other proteins, and various other substances floating around in the water. There’s also one other component that makes this a “cell” rather than soup: a bubble made of fatty material that the droplet is wrapped in, called the cell membrane. Depending on what kind of cell you’re thinking of, there may or may not be a “cell wall” made of some sort of rigid material, with the cell membrane inside of it. There may also be more than one membrane as is the case with the classic “Gram negative” style of bacterium, which has a second “outer” membrane wrapped around its cell wall. If it’s a eukaryotic cell, it’ll even have tiny little “organelles” inside itself wrapped in their own little membranes…but whatever. It’s the innermost one, inside of whatever cell wall may be there but wrapped around the cell’s guts, that we’re concerned with here.

Since stuff that will dissolve readily in water doesn’t tend to dissolve well into fats, and vice-versa, the cell membrane not only prevents stuff dissolved in the water inside the cell from leaking out, it also prevents stuff in the water outside from getting in. This lets a cell maintain itself at near neutral pH even if it happens to live in a very acidic environment, or an appropriate level of, say, sodium salts even if it lives in the Great Salt Lake.

This brings us back again to benzoic acid, which you should recall from the previous post alternates between a dissociated hydrogen-ion-and-benzoate-ion form and a combined, netural form in water. You may have noticed that foods preserved with benzoates tend to be sour, like fruit juices or soda. That’s because “sour” is the flavor of acid, and benzoic acid’s ability to be a preservative is only good in acidic environments

Useless Knowledge Break: the German word for acid is “Saurstoff”. Yes, that is pronounced like “sour stuff”, and no, that is not a coincidence.

An acidic environment means lots of extra hydrogen ions (“protons”) floating around. That also means that when a molecule of benzoic acid splits into a hydrogen ion and benzoate ion, it takes less time before another hydrogen ion comes by and the molecule can recombine again and therefore a bigger majority of the benzoate floating around at any moment is in the combined, somewhat fat-soluble neutral form. In that form, it can soak into a cell membrane if it encounters one.

If that molecule drifts through the membrane and gets to the inside of the cell, it may touch the less acidic watery environment there and dissociate into ions again and be unable to return through the membrane. The released hydrogen ions mean the inside of the cell becomes more acidic. As of today (20080806), the Wikipedia entry for Sodium Benzoate cites a single paper from the early 1980’s saying that when the inside of a yeast cell gets acidic enough, it prevents a specific step in the energy-generating process from working. This may be true, but there’s more to the story than this.

Obviously the membrane can’t totally seal the cell off from the outside, or the cell would be unable to excrete wastes or take in food molecules, so there are numerous specialized “transport” proteins that stick through the membrane to allow specific kinds of molecules in and out. Lots of biochemical reactions release hydrogen ions, so there are transport proteins that can shove hydrogen ions out of the cell and into the cell’s surroundings. The problem is that all substances naturally diffuse from areas of higher concentration to areas of lower concentration, so in an acidic environment the natural direction that hydrogen ions “want” to flow is into the more neutral cell. These transport proteins can shove the hydrogen ions in the opposite direction, but like pushing a boulder uphill it costs energy. This seems to be the primary reason that benzoic acid prevents bacteria and yeasts from growing – it makes them waste energy that they would be using for growth just to keep taking the hydrogen ions that the benzoic acid helps leak in through the cell membrane and shoving them back outside. The figure above is linked to a page at Helsinki university that discusses this type of preservative action in more detail.

Simple and elegant, and this seems to have been assumed to be the whole explanation for some time. But what happens to the benzoate ion when its hydrogen ion gets pumped away? Does it do anything?

Coming up next: Endocannibalism!

Why Benzoic Acid Works: Part 1 – “Some Boring Review Material”

It’s about time I got to the long-promised post about benzoic acid. The thing is, I don’t want to assume everybody reading this is well-versed in chemistry or anything, so after much thought I’m going to split this into three posts. This first one is a bit of chemistry review for some topics that are important to how benzoic acid acts as a preservative. People who are bored by this or know more about it than I do are welcome to either wait for the next post or leave corrections or questions in the comments as you see fit. (Brief note to people reading this from the RSS feed – I’ve noticed that the stylesheet information doesn’t transfer with the RSS, so you won’t see where the web page view would indicate that there is additional information available for some of the terms here. Try hovering over various words and phrases in this post, though, and the information should pop up if it’s there…or just pop in at the main site and post questions if you have any.)

There are several ways people separate types of molecules into opposites. For example, ionic vs. covalent, polar vs. non-polar, or hydrophilic vs. hydrophobic. Although these three categories are each a little different from each other, they all relate to the same thing. As with all other chemistry, it all has to do with what the electrons are doing.

When atoms react with each other, they have a big fight over each other’s electrons. The reaction “finishes” (reaches equilibrium) when this custody battle is concluded. Each of the three categories above relate to how equitable the electron-sharing arrangment ends up being. Once the molecule’s atoms arrange themselves, if the custody of the electrons is distributed fairly evenly around the entire molecule, the molecule is considered “non-polar”. On the other hand, if the atoms at some corner of the molecule end up with more custody of the electrons than the other areas, the molecule ends up having an end that’s slightly more negatively charged (remember electrons are arbitrarily defined as being “negative”) than the others, and the molecule is “polar”. If you dissolve that polar molecule in water and the atoms remain together stubbornly clinging to the shared electrons, the molecule is considered “covalent” (“valence” refers to the area around atoms that electrons “orbit”), whereas if one or more of the atoms readily gains or gives up complete custody of one or more electrons and drifts away from the rest of the molecule, the molecule is considered “ionic”. (It amuses me to think of these latter two terms as “homoelectrical” and “heteroelectrical”. Yes, I am easily amused, why do you ask?) Plain old table salt is what you get when atoms of Sodium (“Na“) and Chlorine (“Cl”) get into one of these electron fights. If you were to look at a Periodic Table of Elements, take a look at the column way over on the left, with Sodium (Na) and Potassium (K) and so on. All of these have one electron that they just don’t really give a crap about. Way over on the other side of the table, one column over from the far right, you’ll see Fluorine (F), Chlorine(Cl) and so on. All of THOSE desperately want an extra electron (Chlorine is the third most electron-greedy – “electronegative” – atom, behind Fluorine and Oxygen). Stick Sodium Chloride in water, and Chlorine says “MINE!”, and Sodium says “Ah, whatever, who needs it?” and the gentle pull of the water molecules around them easily overcome the electric charge based attraction of the now positively charged sodium ion and the now negatively charged chlorine ion, and the two atoms drift apart.

This brings us to “hydrophobic” and “hydrophilic”. There’s a truism in chemistry that “like dissolves like”. Polar substances tend to dissolve well in other polar substances, and non-polar substances tend to dissolve well in other non-polar substances, but polar and non-polar substances don’t mix well at all. Water is a polar substance – it’s got an electron-greedy oxygen atom in between two comparatively electron-apathetic hydrogen atoms. What’s more, the two hydrogen atoms aren’t on exactly opposite sides of the oxygen atom. The “H-O-H” arrangement is actually bent (at just over 104°, if you care), so a water molecule ends up being slightly triangular, with one corner being a little bit negative (where the oxygen atom clings more to the electrons) and two corners with the hydrogens being a little bit positive. Any other molecule with a slightly-positive or slightly-negative part will find that part attracted to one side or the other of water molecules, and as a result will tend to be pulled out into the water as the molecules bounce around [i.e. it will dissolve]. On the opposite end of the scale, molecules with their electrons relatively evenly spread over them tend not to be soluble in water. Large molecules like fats are in this category, which is why fat floats on top of water rather than dissolving in it.

There are two other random facts that I need to wedge in here somewhere. First, the line between “covalent” and “ionic” is actually kind of arbitrary. Water is considered “covalent”, but a very small fraction of the times that two water molecules run into each other, they’ll hit just right so that the slightly-negative oxygen atom on one of them manages to attract one of the slightly-positive hydrogen atoms enough to make it leave an electron behind and jump over. When that happens, you end up briefly with a positively-charged “hydronium” ion (“H3O+“) and a negatively-charged “hydroxide” (OH) ion. It doesn’t take too long for a “hydronium” to find a “hydroxide” again and rearrange back into two water molecules, but in pure water at “standard temperature and pressure” (defined as 25°C and one atmosphere of pressure) at any time there are about 620,000,000,000,000,000 hydroniums and hydroxides floating around in a liter of water – assuming I didn’t screw up my math there.

And, finally: a classical definition of an “acid” is something that “donates protons” (that is, hydrogen ions). In water, that means a molecule that provides extra available hydrogen atoms that water can pull off to form “hydronium” ions more often that water alone does.

And now, at last, we reach the subject of the preservative known as “benzoic acid”. If you read the ingredients lists of the food and drink you buy, you’ll probably never actually see “benzoic acid” on the label. Instead, you’ll see “sodium benzoate” or “potassium benzoate”. If you remember, sodium and potassium don’t really care about one of their electrons, so when you dump “sodium benzoate” in water, the sodium goes floating off to play with the water, leaving behind a negatively-charged benzoate ion with its electron. The extra electron hangs out around the part of the benzoate ion where the electron-greedy oxygen atoms are, making the molecule quite polar. Along comes a new “hydronium” ion, carrying a hydrogen that decides it misses its electron after all, and it jumps over to take over partial custody of the electron that the sodium left behind. In short, you’re going from Sodium + Benzoate + Hydronium + Hydroxide to Sodium + Hydroxide +…Benzoic Acid. (Plus a molecule of water, which is traditionally left out of these kinds of equations, which used to be the “hydronium”.) With the hydrogen attached and sharing the electron, benzoic acid no longer has so much of a charge imbalance and is a lot less polar. Being an acid, Benzoic Acid can also give that hydrogen ion back up again to a molecule of water – exactly the reverse of the reaction that formed it.

That’s the punchline to this: in water, a molecule of benzoic acid might at any one time be without it’s hydrogen and therefore charged/polar and hydrophilic, or it might have the attached hydrogen and be uncharged, relatively non-polar, and be comparatively hydrophobic…or “fat-soluble”.

Next post: So what?

What really counts as a “microbe”?

Just a brief pre-post before the main one I’ve got brewing now (which will be posted either later today or tomorrow).

A tapeworm: Since when does 30-36 feet long count as 'micro'???Microbiology is the dominating topic of this particular blog, but I don’t think I’ve ever addressed what I consider to really count as “micro”biology. This isn’t necessarily an obvious topic. My old “Microbiology” book from 8 years ago, plus the textbook from last year’s “Pathogenic Microbiology” class both contained large sections discussing organisms that are visible without a microscope. Heck, the “Pathogenic Microbiology” text even had a whole section on spider and insect bites. And, tapeworms? Since when is “over 30 feet long” considered “micro”? As I like to say: It’s time for Microbiology to grow up and move out of Medicine’s basement.

So: Here are the defining features of what I consider to be a “microbe”, at least for purposes of what I tend to discuss here on the blog:

  • Obvious: the organism cannot be effectively examined visually without a microscope and individual organisms can virtually never be observed by the “naked eye”.
  • In nature, a full normal population of a microbe can and will develop from a single live cell, and isolated individual cells are reasonably commonly observed.
  • Microbes do not “eat”.

It’s that last point that prompted me to write this post, mainly because it’s such an important part of why microbes work and how they affect their surroundings, especially when it comes to food microbes. What I mean by “do not eat” is that they are incapable of taking large (microbially speaking) chunks of material into themselves to use. Any cell nutrient for a microbe must be in the form of small molecules, like sugars, small peptides or individual amino acids, and so on that can be easily transported across the cell membranes and through the cell wall where applicable.

The importance of this is that for a microbe to grow on a complicated substance like meat or bread (for example), they have to excrete specialized enzymes that break down the substances out in the environment into simpler components like sugars or small peptides. If a microbe cannot secrete a protein-digesting “protease” enzyme, it can be surrounded by tasty, nutritious proteins and still starve to death. If a microbe can’t secrete an amylase (starch-digesting) enzyme, it doesn’t matter that starch is made of nice yummy glucose molecules because they’re all wadded up into long chains of starch that the microbe can’t get at.

And that, finally, is important because it brings up issues of growing multiple microbes together to accomplish something. Sake, for example, is made by fermenting rice, but rice is made primarily of starch. Saccharomyces yeasts don’t make amylases, so in order to make sake, you also have to add a kind of mold (Aspergillus oryzae, one of the types of white-mold-with-little-black-specks that you may see growing on the bread you’ve left sitting around for too long). A. oryzae is also a microbe and therefore can’t “eat”, but it does produce amylase. Since the amylase is breaking down the starches outside of the cells, this means the released glucose is also available for the yeast to use.

Admittedly, my definition above isn’t perfect. On the one hand, it leaves out protozoa (like amoebae and the well-known Paramecium, both of which actually do take in “chunks” of food, but both of which most people would normally consider to be “microbes”. It also leaves IN things like mushrooms, which are not usually thought of as being “microbes” by people who aren’t microbiologists. And, of course, it leaves me with no excuse not to go and learn something about eukaryotic (“plant”) algae (as opposed to bacteria-algae, a.k.a. cyanobacteria) and diatoms. Suggestions for updating my definition may be left in the comments…

Just something that came up while I was assembling what will be the next post. Stay tuned.

Hot a on α action!

I’m busily house-hunting, but here’s a short science post anyway (even if for some reason I don’t appear to be showing up on the main “Just Science 2008” feed…)

Yeast have sex.

Of course, it’s a bit different from the way we multicellular organisms handle the process. For one thing, instead of “male” and “female”, they have “a” and “?”. No, I don’t know who came up with this bizarre naming scheme and yes, I also think whoever came up with it ought to be slapped, or at least forced to explain him- or herself in public.

Like humans, yeast cells have multiple chromosomes. Unlike humans, yeast are normally haploid (humans are diploid). [UPDATE: The review paper I cite in the next post suggests this statement may not be quite so clear-cut.]

Yeast spend most of their time reproducing asexually by “budding” – they make a copy of each of their chromosomes, then shove them all into a little “bud” of cell wall material along with enough enzymes to get started, and the bud then detaches and starts its life as a an independent cell. A clone of its parent cell, but independent anyway.

Yeast can also reproduce sexually, however. Both “a” and “?” cells excrete very tiny proteins referred to as “mating factors” – one type for “a” and one type for “?”. These factors inhibit DNA copying and budding in cells of the opposite “sex”, and instead helps trigger a process whereby cells of opposite “sexes” literally merge to form a single diploid cell. In athe same process of similar to meiosis by which reproductive cells of animals are made, this diploid cell can then make copies of each chromosome (giving a total of four copies of each chromosome – two copies of one parent cell’s chromosomes and two of the other). The parent cell then splits itself into four spores, each containing one more or less randomly-chosen copy of each chromosome. This little trick allows yeasts to reshuffle chromosomes around the population, helping to find and maintain the most advantageous combination of versions of each gene in the cell for the environment in which the population is living.

A practical side-effect of this is that you can effectively breed yeasts, by combining cultures with different characteristics. Hypothetically, many of the yeasts from each culture will end up “mating” with yeasts from the other culture, and if you have a good way of selecting cells that have the combined traits of both strains that you want you can easily make your own new naturally-recombinant strain.

This also seems to relate to why there don’t seem to be any viruses of yeasts…but I’ll save that for another post.

Grossly Oversimplified Science: Obtaining Pure Yeast Cultures

Various yeasts of the genus Saccharomyces (particularly the “Baker’s Yeast” Saccharomyces cerevisiae) represent quite possibly the most important bit of intentional microbiology that we have. We eat and drink the little critters and their byproducts in more or less every human culture that I know of, and are now getting more seriously into burning them, too.

As I’ve mentioned before, gluttony is my second most favorite deadly sin, so bread and booze microbiology is naturally of interest to me. It seemed worthwhile to look into developing my own yeast (and bacteria…but that’s for another post) stocks to brew, vint, and bake with, so I did some poking around. I dug out my copy of Rog Leistad’s “Yeast Culturing for the Homebrewer”, Peter Duncan and Bryan Acton’s “Progressive Winemaking”, a number of internet sources, and finally some scientific papers. I know, I’m a nerd.

I have so far not found much of anything about isolating yeasts from scratch – virtually everything seems to assume that you will “buy” your yeast from somewhere else, and aside from scientific papers most assume that you’re only bothering to culture your own yeast to save money by stretching the sample you bought to brew several batches before buying more yeast from “the professionals” again. This annoys me.

Unfortunately, I’m still on the road and haven’t had time to directly embark on my culture project here. I’m also having a heck of a time tonight trying to come up with a way to make the process of isolating a pure culture sound interesting to anyone besides me. Here’s the extremely abbreviated version:

  • Take something that’s got (in this case) yeast in it (sourdough starter, unfiltered beer, whatever)
  • Make up some solidified yeast food: typically this is something like a mixture of sugar, predigested milk protein, and water, mixed with agar to solidify it, and with a small amount of acid added, since the acidity helps inhibit bacteria that might contaminate the yeast culture
  • Take a tiny bit of the original stuff-with-yeast-in-it, and smear it thinly over the top of the solid medium.
  • Cover the solid medium and put it somewhere warm for a while until you can see individual spots (“colonies”) of growth
  • (The idea is that if done right, at some point on the solid media the “smearing” will have spread out the yeast cells far enough that you can make out the mounds of offspring that an individual yeast cell has made. Each distinguishable round spot of growth is effectively made up of millions of clones of the original single cell that started the “colony”)

  • Take a bit of a single colony and put it in some sterile culture media.

If everything works correctly, this gives you a “pure” culture, isolated from any other kinds of cells that may have been in the original sample. In this example, this is hopefully a brewing or bread yeast culture that you can now use to make beer, wine, bread, or fuel ethanol (the latter assuming you have permission from the Bureau of Alcohol, Tobacco, and Firearms, since it requires distillation.)

Tomorrow: Fun facts about yeast cultures.

All this week: A topic important to secular and religious people alike

It’s not midnight here yet, I’m still on time!

Hello, “Just Science 2008” subscribers and everyone else. My life is insane at the moment but dagnabbit I’m going to do my best to get at least one post up on a scientific topic every day from today (Monday, February 4th) until Friday…

Today’s post is in the form of a gedanken experiment.

First, imagine the following:

  • Some “entities” existing somewhere
  • It doesn’t matter what “entities” you are imagining, whether they are products in a market setting, or data structures in a computer program, or topics of discussion on a news broadcast. All that matters is that there can be more than one of them.

  • A mechanism by which these “entities” are copied (and, optionally, also sometimes removed)
  • Products are manufactured or recalled, data structures can be copied or deleted, additional news anchors can be added to comment on a topic or conversely may shut up about them…

  • At least one mechanism by which changes can occur between or during copies
  • Product designs can be changed, a computer program may consult a “random number” generator and use it to make small changes in the data structure, scriptwriters may alter the news anchor’s teleprompter messages…

  • Some aspect of the “entities” that affects the rate at which they are copied (and/or, optionally, removed).
  • Demand by buyers in the market results in ramping-up of production, a computer program may perform some test or comparison of a data structure and use the result to determine how many copies of it to make (or whether or not to delete it), news topics that result in more people watching are repeated more often while those that people tune out from are dropped from the schedule…

What happens to this group of “entities” over time should be obvious. Taking the example of products in a market, producers introduce a variety of products (the group of “entities” in this example) and buyers examine their characteristics and, based on which ones they like, buy some of them. The producers observe which kinds of products are selling more and make more of those, while reducing or outright eliminating the production of those that aren’t selling well. Over time, a few of the kinds of products in this group which best fit the preferences of the buyers and the ability of the producers to make them. These products will dominate the market until the preferences of the buyers or the ability of the producers to produce them change [example: a shortage in the price of a particular material needed for a popular product].

You have most likely observed this process in the “news topic” context yourself, where it tends to happen much faster as “cheap and easy” news stories are happily picked up by news agencies to broadcast until people get sick of them and tune out.

This can all, hopefully, be understood as a purely logical outcome – a conclusion that universally and necessarily follows from the premises given. There should be nothing supernatural or even surprising here, is there?

So, now that you understand why and how evolution works (if you didn’t before), I can move on. (Incidentally, the part of the example above that describes a computerized system is actually referred to as a “genetic algorithm”.)

My purpose in starting with this is because it really and truly is fundamental to the topic that I expect to spend most of this week posting about, and which has been of vital importance to human culture and intellectual development for thousands of years. This most important subject involves such notable figures as Charles Darwin,St. Thomas Aquinas, Noted American Science-guy Benjamin Franklin, New England Puritan Cotton Mather and Quaker William Penn ,Hardcore Catholics like Pope John Paul II, Hardcore Athiests like PZ Myers, even famous religious figures like Jesus.

I refer, of course, to wine (and beer and other examples of ethanol production).

Okay, here’s the background: I just graduated with my B.S. in Microbiology, and I’ve got this whole “Hillbilly Biotech”/”Do-it-yourself”/”Practical Science” kind of thing going on in my interests. That being the case, I wondered what it would take to isolate, culture, and maintain my own yeast (and bacteria – more on that later) stocks from the environment rather than buying “canned” cultures – or at least play with the “canned” yeasts to create my own stocks. As I was poking around, though, I kept running into the same attitudes – namely that it’s “too hard” to do this, and although there are a number of people who advocate re-culturing canned commercial yeasts for a short time to save money, none of them think it’s feasible to do this for more than a couple of generations, at which point we are assured that you have to go buy it again or else “mutations” will inevitably appear and scary and mysterious “off-flavors” will result and the brewing police will come and throw you in jail for deviating from the archetype of whatever pre-defined style of wine or beer you’re trying to make. Or something like that. In any case, it’s because of this fear of “mutations” that I am starting out with this “evolution”-related post: in biological evolution, various forms of alterations in the genetic material are the “changes before or during copying” in the gedanken experiment above.

I didn’t buy it when people were telling me that it was “too hard” to learn how my computer works so that I could run Linux and should instead leave deciding what my computer should do to the “professionals”, and I’m not buying the same argument about commercial yeasts, either. If I felt that way, I might as well leave the rest of the complex technology of brewing to the “professionals” too, and consign myself to “Lite Beer” and “Thunderbird” for the rest of my life.

I’ve been spending much of the last few weeks perusing books, online articles, and scientific papers on subjects related to brewing in general and brewing yeasts in particular, and this should form the bulk of this week’s post topics, of not well beyond this week. Tomorrow I intend to start in on the actual process of culturing yeasts. Meanwhile, feel free to correct my no doubt horribly over-simplified explanation of evolutionary processes in the comments.

’tis the season to be greedy

Members of my immediate family start asking around this time of year about what kinds of things I’d like for Christmas presents this year.

This strikes me as a good way to break the week-long bout of blogstipation I’ve been having. Here, then, is what I want for Christmas, Xmas, Hannukah, Kwanzaa, Cephalopodmas, or whatever gift-giving winter holiday you prefer (each category is sorted roughly in order of desire at the moment):

Ridiculously Expensive Stuff

Which I only list on the off-chance that someone wins the lottery or happens to find an amazing bargain on “e-bayŽ” or something.

Relatively Expensive Books

Other kinda-expensive-but-maybe-you-can-find-it-at-reasonable-price stuff

Relatively Cheap Stuff (but still spiffy)

I know there was more, but my brain seems to have gone on break right now…

More Search Amusements. (p.s. I Ain’t Dead Yet.)

A bit longer of a delay between posts than I’d like, but here you go:

+ =?????

I am often amused (and regularly baffled) by the kinds of search queries that lead people to this blog.

I wrote a sloppy little script to parse the server’s access logs and figure out who’s searching for what, where. Since I added the ability to recognize Google Image Searches, it’s gotten even stranger.

I do get a lot of perfectly understandable hits – people looking for information about “heat-fixing slides”, expired jello, and looking for pictures of lactic-acid bacteria or whatnot. Some of them are pretty interesting questions…but first, some oddities.

At the top of my current wierd-o-meter: “carbonated leprechaun”…what??? What’s funnier is that this was a Google Image search – someone doesn’t just want information ABOUT carbonation of leprechauns, they want pictures. Now I can’t stop imagining a mash-up of “Darkman” and Leprechaun. Thanks a lot, whoever you are…”I needs me gold! ARGH! SUNLIGHT! [bubblebubblebubble…]”

Another recent one was just a search for the phrase “new england sucks”. As another Image search. Somebody not only doesn’t like New England, but they want pictures of “new england sucks”?…

Less risible but still kind of funny are searches influenced by unfamiliarity with the English language. I have no idea what the search for pictures related to “useful of DNA” was hoping to find. (Uses of DNA? How to “use” [work with] DNA? Diagrams of genetic processes?). I also see a number of searches just based on the name of the blog – people looking for information about furnishing “big rooms”. I have no idea what the search for “name of thing in room” was expected to turn up. This one’s another language issue, but even taking that into account I’m still baffled about this one. I wouldn’t expect google.de to return any useful information for “Sache im Zimmer” (the original search was actually from a Spanish-speaking area, but No Entiendo Espanol, so I’ll use a German analogy instead.)

Or from Sweden: “Aerobic Oxygen fraud”. Somebody’s figured out that we don’t actually need to breathe and that it’s all a ploy by the Oxygen Lobby to enslave us, I guess.

Maybe just because “chemicals” get mentioned here from time to time, I get the occasional hit from someone looking for illegal drug information (either technical or just news of drug busts or whatever). Note to “HILLBILLY METH” searcher: Hillbillies do moonshine. Meth comes from Rednecks. Jeez, doesn’t everyone have to do a semester of Rural Population Stereotype Taxonomy in college anymore?

There are some more relevant and interesting questions that show up here, too.

Oreo CookieI guess someone in southern California used an interesting analogy in their microbiology class, because I recently got a couple of searches from there looking for why the cell membrane is not like an OreoŽ cookie. The answer: There’s no “creme” filling. No seriously – the membrane is two layers of the same kind of molecule stuck together. The phrase you’re looking for is “Phospholipid bilayer”. In a way, the molecules are a lot like detergents – they’ve got one end that “likes” water, and a long tail at the other end that doesn’t (much as oil doesn’t). Since the cell is surrounded by and full of water, you end up with one layer with all its hydrophilic ends touching the water outside the cell, and the other layer with its hydrophilic ends on the inside of the membrane touching the water inside the cell, and the hydrophobic ends of both layers all tangled up together in the middle – without anything between them. See? Not like an oreo cookie at all. Aside from this, cell membranes are also squishier and not chocolate flavored most of the time.

I’ll deal with “does beer and ice cream make gas” in another post later…