Double-Ewe Tea Eff: “Modified Food Starch”

A small package of 'Cinnamon Bears' candyOne of my projects is to appease one of my weaknesses. As I’ve probably mentioned before, “Gluttony” is my second-most-favorite deadly sin. If you’ve been listening to “Stir-Fried Random” (new episode coming shortly, I promise) and reading the blog recently, you can probably tell that among my large collection of “a peculiar fondess for [whatever]” attributes that I possess is one for “Cinnamon Bears“. While they’re not too bad as far as candy goes, they’re still not good for me. Plus, like any candy they can get to be kind of expensive. (Dear Amazon.com: The package plainly says “2/$100“. You’re selling these in groups of 12. Now, I only carried my calculation out to 3 significant figures, but I estimate that this should cost $6.00. Not “$6.85”. Plus $7.90 for shipping. $14.75 for $6.00 worth of convenience-store candy is just stupid.)

Anyway…I’ve gotten my grubby paws on a small bag of erythritol, which is effectively a calorie-free sugar alcohol produced from a regular sugar by a natural fermentation process. All I should need is one or more thickening agents and some oil of cassia and/or other flavors and I should be able to come up with a recipe for my own pig-out-all-I-want, even-better-than-mass-market cinnamon bears. Food is one of the few areas that I seem to have any natural artistic talent with, so I ought to be able to handle this.

A bulk bag of 'Modified Food Starch'The trick is going to be getting the right texture. I’ve found recipes online that use gelatin or pectin. The store-bought product, though, uses “Modified Food Starch”. How exactly do they “modify” the food starch? I vaguely recalled that it was an acid-treatment process that partially breaks up the long glucose polymers, but I wasn’t sure. As any modern nerd would do, I decided to ask My Friend, The Internet.

Most places seem to be vague about what exactly the “modification” is, but it became quickly obvious that there were multiple treatments that result in “Modified Food Starch”. Ah, but I was in luck! The Food and Drug Administration actually has a specific entry[1] in the Code of Federal Regulations, which can always be counted on to definitive. So, I went and looked at good old Title 21, Volume 3 of the Code of Federal Regulations and…WTF?!?!?

They list a bewildering array of chemical and enzymatic treatments that all get lumped into “Modified Food Starch” (or “Food Starch-modified” as they quaintly put it).

I guess my happy new box of “Corn Starch” will have to remain unmodified for the time being. At least until I can figure out how to produce my own ?-amylase [without spitting, that is]. I also have unflavored gelatin and pectin at my disposal here, so I’ll come up with something.

Anybody got a good reference on industrial food processes?…

[1] 21CFR172.892

“A small modification of Koch’s plating method.”

Only two more days for the Classic Papers Challenge, so if I’m going to get any more up, I’d better get my butt in gear.

Here’s a nice easy one:

Petri, R. J.:”Eine kleine Modification des Koch’schen Plattenverfahrens.” Centralblatt für Bacteriologie und Parasitenkunde; 1887; Vol. 1, pages 279-280.

The American Society for Microbiology has a translation available online. It’s only about a page-and-a-half of relatively large type – check it out.

There’s a trick we microbiologists use for growing bacteria. You make a solid (but wet) surface that contains whatever nutrients the microbe (bacteria, archaea, yeasts, mold spores…) you’re interested in need, and then you spread a diluted mixture of the microbe on it. The idea is that since the surface is solid the microbes can’t move around too much, and at any spot where a single cell starts initially, a whole pile of that cell and it’s genetically-identical (non-sexually-produced) clone-children will form until it gets big enough to see without a microscope. This cell-pile is called a “colony”, and you can poke or rub it with a sterile object, then stick the object into a sterile nutrient source. The end result is you have a “pure” culture of microbes that are effectively genetically identical. The solid material could be a lot of things – I’ve seen references to using slices of potato – though these days agar-agar gel mixed with nutrients is the preferred substance.

Koch (that is, Robert Koch of “Koch’s Postulates” fame, not Ed Koch the former mayor of New York City) used gelatin (so, hey, here’s another thing you can do with your expired Jell-O®). He apparently used to have a stack of shallow bowls, and had to use a special pouring device to carefully dump the gelatin into each stacked bowl in turn, then cover the works with a bell jar in order to keep stuff from falling into them from the air and contaminating them.

This was kind of a pain to work with, so some clever guy named Julius came up with a modification of this method in 1887, using pairs of shallow dishes, one slightly larger than the other so that it could be turned upside down to use as a lid. Then, you don’t necessarily need the bell jar, and you don’t need to stack them so they’re easier to pour.

Julius Robert Petri’s idea was so useful that we still use it today. Oh, yeah, and they named the dish-and-lid combination after him.

How’s that for a “classic” paper?

Meanwhile, my “Mountain Dew® Wine” project is turning out to be substantially more educational and fascinating than I’d hoped. There seems to be a decent amount of information available on how benzoic acid affects yeasts. I intend to turn that into a post later, but first I’ll try to find at least one more old paper to post before tomorrow is over…

#1 on Google!

Over on scienceblogs.com’s The World’s Fair, the author has started an amusing meme.

It goes like this: the challenge is to find 5 sets of search terms for which your own blog or site is the #1 hit on a Google search. Note that it is acceptable to quote specific phrases but of course it’s more impressive if you don’t. Here are 8 that (as I type this) for which this blog is the #1 hit (links go to the blog address that is the hit):

There was at least one other which I’m having trouble remembering at the moment. Perhaps I’ll update later if I remember what it was.

Poor-boy science: should I build my own electrophoresis platform?

I want to build my own little electrophoresis gizmo to play with.

I did pick up a small tube of powdered graphite and some liquid tape. With this, I should be able to make a waterproof electrically-conducting glue that I can use for the electrodes. I’ve got numerous old “wall-wart”-type power adapters that I ought to be able to use for power supply.

The main thing I’m trying to work out in my head before I start trying to actually put this together is exactly how I’m going to arrange it so that I can have either a thin gel or a piece of paper or other fibrous material in between the electrodes so that I can best separate things.

I suppose it’s kind of bizarre, but this is actually part of the ongoing Expired JellO® projects. I was wondering to myself what actual changes might possibly occur in a packet of dry gelatin mix over time, and how would I be able to tell?  My previous experiments have shown no indication that there are any easily detectable differences (no obvious changes in taste or texture, no strange eerie glow, no acquisition of superpowers upon eating it…) so I’ll have to look more closely.

It occurred to me that just maybe over time the strands of protein that make up gelatin might get damaged by oxidation from the air in the pouch (or do they seal the pouch in a relatively inert gas, like argon or nitrogen?). This isn’t something one can really tell just by looking, obviously. One MIGHT be able to tell indirectly by making fresh and “expired” packets of gelatin with the same precisely-measured amount of water, poured on at the same precisely-measured temperature, and ideally with the same amount of mixing. Believe it or not, there are actually special scientific devices for measuring the firmness of gels like this. The hypothesis would be that expired gelatin might end up “degraded” into smaller strands of protein than a fresh packet, and that this would be reflected in a reduced firmness of the gel, or perhaps reduced water-holding capacity.

However, I don’t have access to precise devices for measuring things like that, and in any case since I suspect the difference would be pretty minimal, I’m not sure any difference in firmness would really be detectable with any kind of instrument I could cobble together on my own. What to do?…

I thought that if I had a way to subject a sample of dissolved gelatin to electrophoresis, I could then use a protein-staining substance to see how broad of a range of protein-fragment sizes were existent, or perhaps even spot distinct fragments if oxidative damage tended to happen at the juncture between particular amino acids or something.

I’m not quite sure why, but I have a strong desire to do this experiment from scratch as a “hillbilly biotech” exercise (including building the equipment and obtaining my supplies from grocery or hardware stores rather than specialty scientific supply places).

There are special protein staining compounds I can use at the end to see where my bits of protein ended up after electrophoresis. “Coomassie Brilliant Blue“, for example, but they don’t have that down at the grocery store. (And if you think that’s a funny name for a dye, consider “Light Green SF Yellowish”…)

Then, I ran into a post indirectly about henna over on scienceblogs.com. It seems the natural orange-staining ingredient in henna, called lawsone, may be specifically a protein-staining substance. I’m not certain about this, but a dark-orange protein-staining dye would work for my purposes I think. If so, that solves my need to get a protein stain from an ordinary store.

It’ll be a little while before I can try to put this plan into action, but I think I’ll be able to get to it in the next month or two.

In other news, I think I’ll try to post my “Microbial fuel cells in 90 seconds” audio sometime tomorrow. Then I can work on more. Anybody want to hear me attempting to explain something in 90 seconds? So far I’ve considered MRSA, and perhaps how cow flatulence threatens the world’s climate (which is also a microbiological topic). I’m sure there must be plenty of other possible topics. Any suggestions?

P.S. Who wants audio in Ogg Vorbis format in addition to mp3?

The Unbearable Limeness of Being

I awaken. Am I alive? The temperature is neither extremely hot nor extremely cold, so I’m apparently not in some punishment-afterlife. And there’s no beer volcano or stripper-factory, so this obviously isn’t heaven. On the other hand, I am experiencing the usual persistent discomfort involved with waking up early in the morning. On the assumption that Catholic “purgatory” would be more dull, I will assume I am still alive, and had better get up and get to class.

Since my previous experiment, I have obviously had to revise my original hypothesis. Since the last caused me no ill effects, I had to abandon the notion that expired gelatin products become a deadly poison. Instead, as I consume this batch of official, non-sugarless Jell-O®-brand Gelatin (Lime flavored), I operate on a new hypothesis:

“Expired instant gelatin products from intact packaging will not harm me if I eat it.”

My precious stock of expired JellO® is depleted by one more box, the packet ripped from its cardboard sarcophagus, the contents prepared according to the standard instructions, and consumed hastily last night (the animation from the previous post is the actual container of prepared Lime JellO® made from digital photographs taken between helpings.). You can see the old-style date code on the box. According to Carolyn Wyman’s “JELL-O: A Biography”, the code indicates that it was packaged in 2003 (the “3” at the beginning of the code), on the 343rd day of the year, in the San Leandro (California) packaging facility. Although there is no official “expiration date” shown, given the “expected shelf life” of 24 months, this package is approximately 2 years out of date. And I ate it. I appear to have suffered no ill effects. Not even a decent sugar-rush: the entire box contains 320 calories, barely equivalent to a package of Twinkies®. The flavor even appeared to be perfectly normal. Mmmmmm, Lime JellO…

When I took it out to eat it, I did spot a beautiful if alarming sight, though:

The crystalline-appearing sheets of growth from the edge of the bowl into the gelatin was slightly disturbing. Was I crystallizing something odd out of the gelatin/sugar/flavor solution? The growth resembled infiltration of mold into the gelatin medium enough to slightly worry me. But only slightly.

In fact, as I had most suspected, these turned out to be ice crystals. Quite pretty, but they started slowly melting away after the bowl was allowed to sit at room temperature for fifteen minutes or so – plus, they crunched when I ate them just like ice. Thus encouraged, I ate the gelatin and went to bed. And here I am (sitting in the student lounge between “History of Western Art” and “Introduction to Philosophy”) happily blogging away, apparently unharmed.

Does this prove that expired instant gelatin is harmless? Well, no, not exactly. Scientists never really “prove” anything. Instead, we attempt to “falsify” our hypotheses and theories as best we can. This is where the concept of the “null hypothesis” comes in.

The “Null Hypothesis” here is the situation that, if true, falsifies my hypothesis. In this case, it would be “Expired instant gelatin products from intact packaging will harm me if I eat it.”. However, I did eat expired gelatin products from an intact package and was NOT harmed. Therefore I must “reject the Null Hypothesis”…and therefore my experimental evidence does not fail to support my hypothesis! SUCCESS!

If we are unable to find a condition which renders our hypothesis or theory incorrect after many and varied tests, ideally by several different researchers, then we can be confident that our hypothesis or theory is correct, but we don’t necessarily KNOW that there isn’t some odd undiscovered exception that we don’t know about.

Two samples (this one and the previous sugarless-orange one) is hardly a large number of trials. This doesn’t prove that expired JellO® is always safe, but since I know of no plausible way by which an intact package of instant gelatin could become hazardous I feel pretty comfortable that expired gelatin from intact packaging won’t harm me.

If the package is not intact and contains a fuzzy green lump instead of the usual powder, then it’s a whole other situation, obviously…

I do still have three or four more boxes of the sugarless generic expired gelatin – perhaps I can come up with some more tests. Meanwhile, I do hope that my incredibly brave, life-threatening experiments here will relax nervous expired-JellO eaters everywhere…

Expired JellO®! Flee! FLEE FOR YOUR LIVES!!!!

Expired JellO®! Deadly Poison, or Merely Debilitating? Can a human being withstand the toxic load of an *entire box* of it? Would he suffer embarassingly loud and messy gastrointestinal distress, or would immediate organ failure set in before this could take place? STAY TUNED TO FIND OUT!…

Yes, loyal readers, as I type this I have subjected my own body to unthinkable risks to answer these very questions. That, dear readers, is how much I care about your health and welfare. You can thank me later…

If I survive!

What does it mean to be an “Applied Empirical Naturalist”, anyway? As a naturalist, I look for natural explanations for natural observations. If I survive this ordeal, I will not explain it as being due to protection by supernatural forces, and conversely if I end up confined to an intensive care unit, my body ravaged by Expired-Gelatin-Syndrome, I will not seek to explain it as divine punishment for violating Kosher. As an Empirical naturalist, I investigate things by actual observation and direct testing wherever possible, rather than purely philosophical means. And – particularly important to me – Applied Empirical Naturalism is intended to convey that I am primarily interested in investigations with practical uses. Discovering the “Pineapple-Upside-Down Quark” with an umpty-brazillion-dollar particle accelerator and six months of supercomputer time to crunch the data wouldn’t do me, personally, much good. Knowing whether expired JellO® is safe to eat or not, however, has obvious practical application. Especially considering that I seem to have about 5 more boxes of the stuff in the pantry.

So, here I sit, perhaps writing my very last words ever before Expired-Gelatin-Shock causes my brains to swell up and explode messily and fatally from my ears like the popping of two superintelligent zits, in the service of Science. Here, then, is my story.

I begin by building my dire experiment around the following excessively-formal Valid Argument:

Upon expiration, JellO® becomes a deadly poison which causes great harm to those who dare ingest it
I prepare and consume an entire box of expired JellO®
Therefore, I suffer great harm due to its ingestion.

Last night, I plucked from the depths of my pantry an expired-2½-years-ago box of sugarless orange-flavored gelatin with which to begin this investigation. I blew the layer of dust off of the box, and carefully opened it, half-expecting to find some strange mutant gelatin-beast had developed in it over the years since expiration. One hand poised to protect myself should the creature leap from the box to eat my face in anger of being disturbed, I was both relieved and slightly disappointed to find nothing more than a foil packet containing what sounded like perfectly ordinary gelatin-powder. The packet proved to be intact, and the happy orange powder poured into a freshly-cleaned dish in a manner perfectly imitating that of wholesome non-expired gelatin. I dismissed the faint demonic snickering sound I seemed to hear as a figment of my fevered imagination and prepared the gelatin powder in the usual manner.

I took up my electric kettle, containing distilled water, and threw the switch. Seconds passed into minutes. Minutes passed into more minutes. Then, the water began boiling vigorously, and I applied one cup (8 fluid ounces) of this to the dish of powder, stirring it with a tablespoon. It seemed to take at least two minutes of continuous stirring, but the deceptively innocent-looking powder finally dissolved without the slightest scent of brimstone. As prescribed by the instructions on the box, I added a further 8 fluid ounces of cold water (from the tap of my kitchen sink), stirred briefly to mix, and placed the dish in the refrigerator to gel overnight.

I lay awake in bed for hours, wondering if I was doing the right thing. Was I insane? Did I not remember the tales of Jeckyll and Hyde? Of Doctor Frankenstein? Of Pons and Fleischman? What horrible fate was I setting myself up for? Finally, I dropped into a fitful slumber, disturbed only by dreams of amorphous orange demons stalking me to feast upon my soul…

Day broke, and this very afternoon I took the now solidified mass from the refrigerator. This was it. My last chance to avoid whatever hellish abuses this disturbingly orange substance had planned for me. But no…it was far too late to turn back now. I took up my spoon, and devoured every last bit of happy orange jiggliness.

This was approximately seven hours ago. In the intervening time, I have experienced the following symptoms: Occasional thirst, mild generalized anxiety about the near future, hunger, and an urge to write this blog post in a hyperbolic language more suited to an H.P. Lovecraft story than a scientific report. In other words…I appear to have been entirely unaffected, despite consuming an entire box of expired gelatin.

I’ve been taught that when hypothesis-testing, one considers the “null hypothesis”. That is, the hypothesis that would falsify the one that I’m starting with. In this case, it would be something to the effect of “I will suffer no harm whatsoever from eating expired JellO®”. Given the results in this experiment I must – in the tortured language of philosophical science – “fail to reject the null hypothesis”, because my results show no evidence whatsoever that I have suffered harm from eating expired gelatin. In other words, I cannot rationally cling to my original hypothesis as written, and must confess that perhaps expired instant gelatin still in intact packaging may, in fact, be harmless.

Ah, but I know what happens now. “Cad!”, you cry! “Fraud! Sham! This experiment is, like, totally bogus! This is not normal JellO® but a sugar-free impostor! And furthermore, this isn’t even JellO®-brand gelatin, but a cheap knock-off brand! How dare you, sir, feed us this crap, which proves nothing!”

I answer in two parts: Firstly, ladies and gentlemen who are my readers, I assure you that the contents of the less-famous brand and the official Kraft® Foods brand are essentially identical, and indeed, might conceivably have come from the same source. It’s common practice for one factory’s product to be shipped to multiple sellers who each offer it under their own label, as the wide variety of affected brands during the recent “salmonella peanut butter” scare demonstrated. And secondly: as it happens, I also have in my possession a box of JellO®-brand lime-flavored gelatin, WITH sugar, which although it lists no obvious “expiration date”, has a code stamped on the box indicating that it was originally packaged in late 2003, and therefore should have exceeded the expected 24-month shelf-life about the same time as today’s test subject did. I swear to you, dear readers, that I will repeat my experiment with this sample next.

Stay tuned: “Expired JellO II: Lime’s Revenge”, coming soon to a blog near you!

UPDATE: The Expired JellO® Saga continues here!

Chunky Bacon Agar, and Expired Jell-O™ again

I’m still working on the “Taxonomy of Yogurt” post which I currently plan to do next, but I’m overdue for a post already – therefore, here’s a brief one to keep my legion of adoring fans appeased until the next long post, here’s a short one.

Part 1: I got an interesting search-query hit recently – looks like (I’m guessing) a technician working at a famous pharmaceutical/healthcare-product company ran into the same problem I did during my current Bacterial Virology lab – “chunky microbiology agar in microwave”.

Agar is nifty stuff to use for microbiology. Dried, it’s a lumpy powder. To use it, you dump around 1-2% w/v (more or less, depending on the consistency of agar that you need) into water and heat it up to dissolve it. It’s basically seaweed-JellO™ – except it’s not actually affiliated with Kraft Foods nor made of gelatin. Anyway – once it’s dissolved, it’ll cool into a gel.

The nice thing is, you can make up a bottle of this stuff and let it solidify, and store it (sealed) for quite a while. When you want to use it, you can just stick it in a microwave oven to melt it back down. It has to get pretty hot for this, but it then stays liquid until it gets down nearer to room temperature, so you’ve got plenty of time to pour it into plates or tubes or whatever.

For bacterial virology purposes, we make up a “soft agar” (about 0.8% agar, as I recall) to make an “overlay” – after mixing bacteria and virus together into a small amount of melted [but mostly cooled, so it doesn’t fry the bacteria] agar, we pour the soft agar in a thin layer over the top of a regular layer of nutrient agar in a plate. (The idea is that then wherever there is a virus that can infect and kill bacteria, it’ll wipe out all the bacteria growing in a particular part of the overlay, leaving a cleared “plaque” – you can then count how many plaques there are to find out how many virus were in the original sample, for example).

Earlier this semester, we had a fair amount of trouble with this. We’d go to pour the overlay and it’d come out chunky, even though it looked completely melted when we prepared it. Fortunately, the problem is simple and easily solved – you just need to nuke the heck out of the stuff, frequently swirling the container to make sure it’s completely mixed. What seems to be happening is that a few bits of agar remain unmelted but hard to see if you’re not careful, and those bits allow the melted agar to coagulate around them more readily. In short, the trick is to make really sure that all of the agar is completely melted.

Note that you have to be careful while doing this – lots of bubbles end up coming out of the agar when you swirl it, and it can easily foam out of the container and burn your hand. (Oh, obviously you also need to leave the lid a little loose to let off the pressure.) Of course, the stuff will be really hot when you’re done with the microwave, but as mentioned before, it’ll stay liquid until it is much cooler before it solidifies. If you set the bottle in a warm-water bath (~50°C or so) you can basically walk away for hours, leave it overnight, or whatever, and it should still be completely liquid and smoothly pourable – not to mention cool enough to handle with bare hands – when you get back.

And on the subject of gelled material – the fact that I mentioned all the hits about expired Jell-O™ in the previous post seems to have substantially increased the number of “expired-JellO™-related” hits I’ve gotten, so here’s a slightly more expanded update.

Assuming one is referring to the “instant gelatin” powders (regardless of brand), as far as I can tell they ought to be safe to use almost indefinitely. Officially, Kraft Foods, the owners of the Jell-O™ trademark say that the expected shelf-life is 2 years (“24 months”). I still think, personally (Note – Your Mileage May Vary, Do Not Try This At Home, and other standard disclaimers apply here) just like sugar, that it is probably safe to use practically forever as long as it doesn’t get wet (and isn’t stored in humid conditions). I don’t think anything of consequence would be able to grow on the dry powder, and I find it unlikely that the normal flavorings would be prone to suddenly become poisonous as a result of ordinary aging. The only thing you might have to worry about is maybe some of the flavoring compounds getting slowly oxidized by the air, so maybe the result wouldn’t taste quite the same. As far as I am concerned, so long as there weren’t fuzzy clumps growing in it, if the contents of the packet were still flaky/powdery, I’d most likely go ahead and use it, and not expect to suffer any ill effects.

‘course, if you read my obituary someday and it notes that I died of expired-gelatin-poisoning, you’ll know I was wrong…

UPDATE: I empirically test the toxicity of of expired JellO® on my own body! The saga begins here!