Another cheatin’ “Open Thread” and random stuff

No single topics to dominate a post today. I’m in a hurry (as usual lately) and have very little time. Tomorrow morning I’m back on the 1600-mile route back to Southeast Texas, hopefully to sign the closing paperwork on the house we’re trying to buy.

My Mountain Dew® Wine appears to be still sitting there after several hours. Either the benzoic acid is still inhibiting the fermentation (in which case it’ll go REALLY slowly) or the yeast is just in shock or something. We’ll see how it looks in the morning. I’ll leave it for a week or so anyway to see how it does. Meanwhile I’ll refrigerate the other batch of yeast culture until I get back. If I have to develop my own strain of “Mountain Dew Yeast” I will, dagnabbit!

I did get a chance to go for a quick walk in the Big Room on the way back from some errands yesterday, so it gives me an excuse to play with the wordpress map plugin again (RSS feed readers: the map doesn’t get inserted there. Please check out the interactive map at the blog’s website here.) Comments on the map (or anything else, really – I DID say “Open Thread” after all) are encouraged – what do you think? I’d like to do some audio content for points on a map at some point, too. Maybe some video.

Lava Rock Walk [height=560;width=560]

If anyone’s bored enough to want to see how I get from Southeast Idaho to Southeast Texas, I can post a map of that tomorrow, too…

Boosting fermentation with science

All right then – I’ve got five pounds of honey, a pound of frozen cherries, packets of a couple of different dried yeasts, miscellaneous other potential additives, two 2-gallon polyethylene terphthalate fermentation containers with screw-top lids and spigots, several feet of aquarium airline tubing and connectors, silicone sealant, and miscellaneous kitchen gadgets (including a hydrometer). Now it’s time to discuss what I’m about to do and fish for comments and criticisms before I jump into it.

My goal here with this brewing experiment is a quick primary fermentation. And to compare the results from two different yeast strains, uh, TWO goals, quick fermentation, yeast strain comparison, and fermentation container design. THREE goals. Quick fermentation, comparing yeast strains, fermentation container design, and to try to keep the yeast cultures from dying off too quickly during the fermentation. FOUR. Four goals…

In this post, I’ll stick to talking about what I’m putting into the brew and how I hypothesize my additives and process with speed the fermentation along and help keep a large portion of the yeast viable during the primary fermentation.

Actually, the health of the yeast populations and the speed of fermentation are overlapping goals; more cells remaining alive and healthy means more cells simultaneously chewing up sugars and spitting out ethanol for me, resulting (hypothetically) in faster primary fermentation. In this experiment, I’m going to be focussing on nutrients and spices that are reported to benefit yeast activity. Here’s the process I am currently planning to follow, focussing primarily on the fermentation-boosting parts:

  • I’ll boil the 5 pounds of honey with enough tap-water to make about 2 gallons of must, adding the frozen cherries sometime after the boil gets underway.
  • Fermentation boost: we have water so hard that you have to wear a helmet to take a shower. (Joke stolen from my Environnmental Chemistry instructor, so you can blame Dr. Rosentreter for that one). It’s loaded with Mg2+ and Ca2+, which seem to be able to help the yeast to produce ethanol faster and survive higher ethanol concentrations better[1][2] as well as just being general nutrients[4].

  • Two approximately ½-liter amounts of the must will be put into clean glass quart bottles and used to develop the initial yeast culture for pitching (each one for a different strain of yeast).
  • Fermentation Boost: Growing up a large population of yeast from the dried yeast packets before pitching will give me a faster start. In addition, the large headspace and the use of cloth rather than plastic or rubber covering of the top will allow oxygen to get into the starter culture, helping it to develop more quickly and in a more healthy fashion (i.e. a larger proportion of healthy, viable cells).

  • Nitrogen supplementation: Capsules of arginine picked up cheap at a certain big-box store will be added to the yeast starter.
  • Fermentation Boost: “Free Amino Nitrogen” is perhaps the most important bulk nutrient for yeast, and arginine seems to be the preferred amino acid source[3][4], presumably because it contains the most reduced nitrogen per molecule of the amino acids. I actually want to try to develop a process for using dry milk powder instead, but achieving sufficient hydrolysis of the milk proteins looks like it’s going to take some development on my part. For now I’ll “cheat” and use arginine instead.

  • Vitamin supplementation: A single well-crushed children’s “chewable vitamin” (“Flintstones™” or generic equivalent) will be added to each starter culture as well.
  • Fermentation Boost: Pantothenic Acid (Vitamin B5), Inositol, trace minerals, and small amounts of additional potassium and phosphate to supply vital nutrients to the yeast culture.[4]

  • Fermentation-enhancing spices: I will be adding ground ginger and cinnamon (actually cassia) to the must near the end of the boil.
  • Fermentation Boost: In addition to providing what I think will be excellent complementary flavors to the final product, it appears that even fairly large amounts of these two spices – among others – provide a boost to fermentation rate[5] (via Shirley O. Corriher’s “Cookwise”[6]) of Saccharomyces cerevisiae cultures. If I’m doing the conversions appropriately, the peak fermentation boost for ginger works out to something like 3 tbsp of ground ginger per liter, or something like (very roughly) 10 tablespoons per gallon. I don’t plan to add quite so much, but a couple of tablespoons of each spice in the two-gallon batch ought to provide some nice flavor while still hopefully providing a boost to the fermentation rate as well.

“Cinnamon”: In the US, the rust-colored stuff labelled “Cinnamon” is not, actually, cinnamon. True cinnamon (Cinnamomum zeylanicum)is actually tan in color. What you get in the US when you buy a bottle of “Ground Cinnamon” actually comes from Cassia (Cinnamomum aromaticum), a closely related plant. Realistically, as far as I have been able to find out so far, there’s not likely to be a huge difference in the active components or flavor. While I haven’t yet gotten my hands on a copy of the old article from Cereal Chemistry[5] mentioned above, I’d give good odds that the “cinnamon” used in the study was also actually cassia anyway.

There’s one more thing that I hypothesize would help promote my goals that could be added: small amounts of oxygen[7] (say, less than 13% O2, or very roughly speaking, around half of the normal atmospheric concentration or less). However, I’m still trying to work out an easy way to achieve this automatically and am not yet ready to try it. Besides, this is already pretty poorly-designed for a “real” scientific experiment as it is, considering the number of variables that are really contained in this brewing process. Really, my hypothesis here boils down to a relatively vague “This mixture and process will allow me to finish the primary fermentation within a day or two of pitching”. If I ever have opportunity to do serious experimentation on this, it’ll require setting up a large number of separate fermentation reactions to assess the effects varying each individual set of hypothetically-fermentation-boosting additives. Hopefully one of these days things will settle down enough to let me try it.

If anybody sees anything stupid (or just interesting) up there, please say something…

[1] Dombek KM, Ingram LO: “Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation.”; Appl Environ Microbiol. 1986 Nov;52(5):975-81.
[2] Nabais RC, Sá-Correia I, Viegas CA, Novais JM: “Influence of Calcium Ion on Ethanol Tolerance of Saccharomyces bayanus and Alcoholic Fermentation by Yeasts.”; Appl Environ Microbiol. 1988 Oct;54(10):2439-2446.
[3] Carter BL, Halvorson HO: “Periodic changes in rate of amino acid uptake during yeast cell cycle.”; J Cell Biol. 1973 Aug;58(2):401-9.
[4] Fugelsang KC, Edwards CG: “Wine Microbiology – Practical Applications and Procedures (2nd Ed.)”; 2007; Springer Science+Business Media LLC; pp 15-18
[5] Wright WJ, Bice CW, Fogelberg JM: “The Effect of Spices on Yeast Fermentation.”; Cereal Chemistry. 1954 Mar;Vol.31,100-112
[6] Corriher, SO: “Cookwise”; 1997; HarperCollins Publishers, inc; New York; pp 69-70
[7] Nagodawithana TW, Castellano C, Steinkraus KH: “Effect of dissolved oxygen, temperature, initial cell count, and sugar concentration on the viability of Saccharomyces cerevisiae in rapid fermentations.”; Appl Microbiol. 1974 Sep;28(3):383-91.

Do Not Want: Celestron LDM

Back in Idaho for the moment. The trip was somewhat exhausting, but I thought a followup to The previous post on the Celestron LDM microscope was in order, as I finally got a reply back after almost two weeks.

(20080329:Quick update. I am surprised to see this post is getting more interest that I’d anticipated. I’ve added a brief summary to the end of the post to help clarify my opinion since it seems people may be interested.)

I had asked them if it was possible to replace the objective lenses (so as to be able to use an oil-immersion lens to get 1000X magnification – pretty much a neccessity for decent bacteriological work – such as examining yogurt cultures) and whether the camera could be swapped for a regular eyepiece. Larger yeast cells used in brewing might be okay in 400X, but even there it’d be nice to be able to zoom in adequately to get better detail – like watching conjugation or budding of yeast cells.

The answer:

“The answer is ‘no’ to both because of the sizes, etc. are specific to this unit.”
Email ID: ZZR-372549
Department: Technical Support
Status: Closed

I guess there’s no point in asking about getting a darkfield condenser for it. On the plus side, they did actually give me a reply at least.

I’ve got to say I’m seriously disappointed that Celestron has evidently intentionally engineered this microscope product (and their other offerings as well, perhaps?) to Not Play Well With Others. Why else go to the trouble and additional expense of coming up with your own special specifications for the parts when standard parts are readily available?

This seems especially absurd in a product aimed at science enthusiasts, who strike me as very likely to be strongly aligned with the “Maker” attitude…at least if they’re any good at Science Enthusiasm. I think the “if you can’t open it, you don’t own it” concept meshes very well with the investigative attitude necessary for science. So, we want “internet”, and they give us “AOL” instead. A sad, sad fate for an otherwise great concept, and on this basis I must render a verdict of “Do Not Want”.

Find me a version of this product – from any vendor – which can accept standard oculars and objective lenses and I’ll sell blood plasma and beg on the street to raise money for it. (If nothing else, it’d give me an excuse to finally start up the “science begging” blog-post series I’ve been threatening for a while now…) Of course, it’d be nice to have an ordinary “real” microscope, too…this blog still doesn’t have enough pictures.
(P.S. Dear Celestron: although I doubt anybody at Celestron will ever even see my obscure blog, and in that respect my previous post’s comment about sending me one to review was just a joke. Despite this, I was sincere, so in the unlikely event that someone out there sees this post and has the authority and inclination to do so, feel free to send me one to review anyway. And a pony.)

SUMMARY (in my opinion):

  • VERY nice, highly desirable concept overall.
  • Self-contained, platform-neutral design, should work with anything that can support SD cards or USB Storage devices.
  • Potentially a nice field microscope? (Probably not hard to hack together a battery pack that could be used in place of the AC adapter)


  • Does NOT appear suitable for bacteriological or similarly high-magnification applications
  • Non-standard components prevent upgrades.
  • Non-standard components mean vendor lock-in problems (if Celestron gets tired of making replacement parts and some kid scratches your objective lenses or cracks the viewscreen, you’re out of luck.)
  • Digital camera and viewscreen appear to be integral, so if the camera or viewscreen dies I’d guess the whole device becomes a useless lump.

My recommendations for Celestron or other microscope manufacturers (should any of them care about the opinion of some nerd on some obscure blog like this one):

  • Please, please use standard parts wherever possible – it makes your device a much safer bet for anyone thinking ahead towards possible upgrades or replacement parts.
  • Don’t ignore bacteriological applications.
  • Easily replaceable parts make for graceful failures. For example, if the camera on this model could be swapped for an ordinary ocular, the microscope would at least be usable while the camera portion was being sent in for repair or replacement.